NOME	TERMODINÂMICA E CINÉTICA AVANÇADA
Carga horária	10 créditos - 150 h
Docente Responsável	Prof. Luciano Caseli
SIGLA	CTS16
Obrigatória	SIM
Ementa	O objetivo geral deste curso é apresentar fundamentos de Termodinâmica e Cinética Química, aplicadas a transformações químicas e físicas elementares, processos industriais e bioquímicos, partindo de uma abordagem molecular. Módulo 1: Desenvolvimento da Termodinâmica a partir da função da Partição - Função de partição e Gases Ideais - Função de partição para estados eletrônicos e vibracionais Leis da termodinâmica - sistemas macroscópicos x microscópicos
	Módulo 2: Aplicações da Termodinâmica - Leis da Termodinâmica aplicada a processos industriais - Energia de Gibbs aplicada à formação de proteínas e membranas biológicas. - Aplicações da Termodinâmica a Equilíbrio de Fases - Descrição Termodinâmica das Misturas - Termodinâmica Envolvendo transporte de cargas - Bioenergética: transferência de elétrons. - Aplicações da Termodinâmica ao Equilíbrio Químico - Termodinâmica aplicada a sistemas coloidais e Interfaces
	Módulo 3: Termodinâmica de Processos Irreversíveis - Produção de entropia - Relação entre reações químicas e processos de difusão - Princípio de entropia mínima no estado estacionário - Estruturas Dissipativas - Caos Químico
	Módulo 4: Cinética Química - Fundamentos e Técnicas Experimentais para determinar velocidades de reações - Leis de velocidade de reações e constantes cinéticas, resposta à Temperatura - Superfícies de Energia Potencial - Cinética farmacológica: estudo de casos. - Mecanismos de reações: reações elementares e consecutivas, casos complexos - Estudo de casos: 1) Enovelamento de proteínas, 2) Catálise por enzimas controladas por difusão - Superfícies de Energia Potencial - Dinâmica de reações: teoria de colisões, e do estado de transição - Estudo de casos: 1) Efeito de sais em cinética química, 2) colisões moleculares de gases - Estudo de casos: 1) Transporte através de biomembranas, 2) Transferência
Bibliografia	de elétrons em sistemas biológicos (relação cruzada de Marcus) 1. Thermodynamics and Kinetics for Biological Sciences, G. Gordon,
Dionograna	Wiley-Interscience, 2000, ISBN-10: 0471374911

	2. Thermodynamics and Kinetics in Material Science – A short Course,
	B.S. Bokstein, M.I. Mendelev, D.J.Srolovitz, Oxford University Press,
	2005, ISBN-10: 0198528043
	3. Chemical Kinetics and Dynamics, J.I.Steinfield, J.S.Francisco, W.L.Hase,
	Prentice Hall, 1998, ISBN-10: 0137371233
	4. Statistical Mechanics, D.A. McQuarrie, University Science Books,
	2000, ISBN-10: 1891389157
	5. Physical Chemicistry: A molecular approach, D.A. McQuarrie, J.D.
	Simon, Sausalito: University Science Books, 1997, ISBN-10:
	0935702887
	6. Físico-Química Biológica, P. Atkins, J. de Paula, Rio de Janeiro: LTC,
	2008, ISBN-10: 9788521616238
	7. Reaction Kinetics, M.J.Pilling, P.W .Seakins, Oxford Science
	Publications, 2005, ISBN-10:019855527X
	8. Introdução à Termodinâmica da Engenharia Química, J.M. Smith, H.C.
	Van Ness, M.M.Abbott, LTC, 7 ^a ed., 2007, ISBN-10: 9788521615538
	9. Thermodynamics, E. Fermi, Dover Publications, 2000, ISBN-10:
	1607962381
	10. Thermodynamics, Statistical Thermodynamics, & Kinetics, T. Engel, P.
	Reid, Prentice Hall, 3° ed., 2012, ISBN-10: 0321766180
	Reid, Fletitice Hall, 3 ed., 2012, ISBN-10. 0321700160
Docentes	Luciano Caseli
envolvidos	2. Carolina Vautier Teixeira Giongo
	3. Romilda Fernandez Felisbino
	4. João Lago
	5. Alexandre Keiji Tashima6. Leonardo José Amaral de Siqueira
	o. Leonardo Jose Amarar de Siqueira