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ABSTRACT: The Law of Mass Action (LMA) is generally used to describe the equilibrium of 

ion exchange processes. This is a rigorous methodology in terms of thermodynamics that 

considers the non-idealities in the solid and solution phases. However, Artificial Neural 

Networks (ANNs) can also be effectively used in phase equilibrium modeling. In the current 

study, ANNs were used to describe the ion exchange equilibrium in the binary systems Cu
2+

-

Na
+
, Zn

2+
-Na

+
 and Cu

2+
-Zn

2+
 and in the ternary system Cu

2+
-Na

+
-Zn

2+
, using the resin Amberlite 

IR 120 as ion exchanger. The datasets used in the training stage of the ANNs in this study were 

generated by the application of the LMA on the binary systems. Results showed that, in the 

equilibrium modeling of the binary systems and in the prediction of the ternary system, both 

methodologies had similar performance and can be used to describe binary and ternary 

equilibrium. 
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1. INTRODUCTION 

The release of heavy metals, such as zinc 

and copper, into the natural environment is one of 

the main causes of industrial pollution and has 

resulted in a number of environmental problems. 

Heavy metals have a cumulative effect and cannot 

be degraded nor destroyed. (Anirudhan and 

Suchithra, 2010). Moreover, heavy metals tend to 

accumulate in living organisms, causing various 

diseases and disorders (Barros et al., 2003). 

Excessive zinc intake may lead to electrolyte 

imbalance, nausea, anemia and lethargy 

(Fairweather-Tait, 1988; Prasad, 1976; Prasad, 

1984; Valee et al., 1957), while excessive intake of 

copper can lead to severe headaches, increased 

heart rate, nausea, hair loss, hypoglycemia, damage 

of kidney and liver. It may also cause 

psychological problems, such as brain dysfunction, 

depression, and schizophrenia (Nolan, 1983). 

Table 1 lists the industrial sectors that are 

likely to bear heavy metal in its wastewaters 

(Volesky, 2001). 

Table 1. Major metal-bearing industry sectors. 

Industry Metals 

Mining operations Cu, Zn, Pb, Mn, U 

Electroplating operations Cr, Ni, Cd, Zn 

Metal processing Cu, Zn, Mn 

Coal-fired power generation Cu, Cd, Mn, Zn 

Nuclear industry U, Th, Ra, Sr, Eu, Am 

 

Among the heavy metal removal processes, 

the ion exchange process, shown in Equation 1, is 

very effective to remove various heavy metals and 

can be easily recovered and reused by regeneration 

operation (Lee et al., 2007). 
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Where A and B represent the ion pairs, z 

represents the charge of the ionic species, S 

represents the solution phase and R the solid one. 
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The most common mathematical models 

which represent the ion exchange equilibrium are 

Langmuir Isotherms and the Law of Mass Action 

(LMA), however, the former doesn’t take into 

account the effects of the counter-ion and the ionic 

strength of the solution, and the latter requires 

multiple parameters which are commonly not 

found in the literature and depends on the 

resolution of non-linear equation systems. 

1.1. Law of Mass Action 
 The LMA is a model foregrounded on the 

fact that ion exchange is a reversible process, 

which is ruled by a chemical equilibrium that 

defines the selectivity of the ion exchanger 

(Canevesi et. al, 2012). The thermodynamic 

equilibrium constant (   ) for the ion exchange 

reaction between species A and B is defined by 

Equation 2 (Borba 2010): 
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 Where    is the valence of species j;    is 

the equivalence fraction of species j in the resin 

phase;    is the equivalent concentration of species 

j in the liquid phase;     is the activity coefficient 

of species j in the solid phase; and    
 is the 

activity coefficient of species j in the solution 

phase. 

If non-ideal behavior of the fluid and the 

solid phases is taken into consideration, then the 

activity coefficients should be calculated. Activity 

coefficients in solution phase can be calculated 

using Bromley’s (1973) model while activity 

coefficients in solid phase can be calculated using 

Wilson’s (1964) model. 

The expression (Equation 3) proposed by 

Bromley considers the effect of all species (cations 

and anions) present. 
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The ionic strenght I is given in Equation 4. 
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Where n is the number of species in solution 

and    is the molality of species j in solution.  

The term    is the sum of the interaction 

parameters. For each cationic species j in a multi-

component solution, this term is given by  

Equation 5. 
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The subscripts i and j refer to the anions and 

cations in solution, respectively. Parameters    

and    , given by Zemaitis et. al. (1950), depend 

on temperature. 

Equation 8 gives Wilson’s model equation 

for the calculation of the activity coefficients of 

species A and B on solid phase. 
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 Where n is the species number in the resin 

phase and Λ is the Wilson’s model interaction 

parameter. 

The term    is the sum of the interaction 

parameters. For each cationic species j in a multi-

component solution, this term is given by    

Equation 5. 

1.1. Artificial Neural Networks 
An important alternative for the modeling of 

ion exchange equilibrium is the use of Artificial 

Neural Networks (ANNs).  

ANNs are computational methodologies that 

perform multifactorial analyses. Inspired by 

networks of biological neurons, artificial network 

models contain layers of simple computing nodes 

that operate as nonlinear summing devices. These 

nodes are richly interconnected by weighted 

connection lines, and the weights are adjusted 

when data are presented to the network during a 

“training” process. Successful training can result in 

ANNs that can perform tasks such as predicting an 

output value, classifying an object, approximating 

a function, recognizing a pattern in multifactorial 

data, and completing a known pattern. (Dayhoff 

and DeLeo, 2001). 



 

Due to the reliability and capacity of 

capturing non-linear relationships existing between 

variables in complex systems (Yetilmezsoy and 

Demirel, 2007), ANNs can be a powerful and 

relevant alternative for modeling industrial 

processes.  

 

 

Figure 1. Artificial Neural Network with one 

hidden layer.  

Although the number of parameters to be 

determined is higher, ANN is a method that 

calculates variables in an explicit way, meaning 

that, unlike the LMA, it does not require the 

solution of a system of non-linear equations 

(Canevesi et al., 2012). 

2. METHODS 

The evaluation of the ANN methodology 

was undertaken by using equilibrium data of the 

binary systems Cu
2+

-Na
+
, Zn

2+
-Na

+
, Cu

2+
-Zn

2+
 and 

of the ternary system Cu
2+

-Na
+
-Zn

2+
, both at 

concentrations 1, 3 and 5 meq.L
-1

 and temperature 

298 K, obtained by Borba (2010). The author 

investigated the ion exchange of these ions in 

solution using the synthetic resin Amberlite IR 

120, whose capacity for cation exchange is 5.135 

meq.g
-1

. 

2.1. Modeling by ANNs 
The ANNs used a logistic function as 

activation function and only one hidden layer. 

The number of neurons in the input and 

output layers were, respectively, 4 and 3 in all 

cases. The synaptic weights were initialized with 

random numbers between 0 and 1, and then 

determined by the minimization of the root-mean-

square deviation (Equation 9) by a nonlinear 

conjugate gradient algorithm (Wright & Nocedal, 

1999). 
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Data used to train and validate the ANNs 

consisted of 100 scores from each binary system, 

totalizing 300 scores, where 80% of the dataset 

(240 randomly chosen scores) was used in the 

training stage and 20% of the dataset (60 randomly 

chosen scores) was used in the validation stage. 

However, data were fed as a ternary system. In 

other words, the composition of the absent species 

in the binary system was presumed to be zero. 

Input variables were the total concentration 

of the solution phase (meq.L
-1

) and the 

compositions of each species in solution phase, 

while output variables were the compositions of 

each species in solid phase. 

Total concentration of the metal in solution 

phase and compositions in the solution phase were 

used as input variables and compositions in solid 

phase were used as output variables. 

Several network structures were tested, by 

varying the number of neurons in the hidden layer 

between 4 and 20 neurons, in order to achieve 

good performance on the prediction of the ternary 

systems. 

2.1. Data generation 
Experimental data obtained by Borba (2010) 

consisted of 56 scores divided amongst the three 

binary systems. In order to train the ANNs, more 

data were required to efficiently represent a larger 

variety of compositions of all the species in 

solution and solid phase in the ion exchange 

process. As a means to obtain a consistent model, 

these data were produced by LMA. 

Activity coefficients in solid phase were 

calculated using Wilson’s (1964) model. 

Equilibrium constants and Wilson’s parameters, 

estimated by Borba (2010) are presented in Table 

2. Activity coefficients in the solution phase were 

calculated using Bromley’s (1973) model whose 

parameters are presented in Table 3. 

Table 2. Wilson’s model parameters at 298 K. 

System Keq 

Parameters of Wilson’s 

equation 

Λ12 Λ21 

Cu-Na 0.3258 2.7286 0.3666 

Zn-Na 0.3782 2.0750 1.0485 

Zn-Cu 0.9817 1.1769 0.0896 

 



 

 

The number of neurons in the input and 

output layers were, respectively, 4 and 3 in all 

cases. The synaptic weights were determined by 

the minimization of the root-mean-square 

deviation (Equation 9) by a nonlinear conjugate 

gradient algorithm (Wright & Nocedal, 1999). 

Table 3. Bromleys’s model parameters at 298 K. 

AΦ BCuCl2 BNaCl BZnCl2 

0.5162 0.0654 0.0364 0.0574 

3. RESULTS AND DISCUSSION 

3.1. Data generation 
Initially the equilibrium curves were built 

using the LMA, using Equation 1 and the 

parameters presented in Table 1. The obtained 

results are presented in Figure 2 for the binary 

systems Cu
2+

-Na
+
, Zn

2+
-Na

+
 and Zn

2+
-Cu

2+
, 

respectively. 

 

Figure 2. Equilibrium curves for the Binary 

systems Cu
2+

-Na
+
, Zn

2+
-Na

+
 and Zn

2+
-Cu

2+
           

by LMA. 

Table 4 presents the absolute average 

deviations (AAD) from the LMA for each system. 

According to the absolute average 

deviations, the Law of Mass Action described in a 

precise way the experimental data of binary 

equilibrium, therefore justifying the use of the 

equilibrium curves as datasets to train the neural 

network. 

Table 4. Results form the application of          

LMA to binary data. 

System AAD 

Cu-Na 5.3563 

Zn-Na 5.1324 

Zn-Cu 2.0293 

3.1. Modeling equilibrium data 
Several structures were tested to model the 

binary data in the training stage of the Artificial 

Neural Networks using 80% of the generated data 

chosen randomly.  Posterior to the training stage, 

the ANNs were submitted to a validation stage 

using the remaining not used 20% generated data. 

Finally, the ANNs were submitted to a prediction 

stage, using only ternary equilibrium data. Thereby 

obtaining the structure that best represented the 

equilibrium data analyzed in addition to 

successfully predicting the behavior of ternary data 

equilibrium.  

Table 5 shows the tested structures and the 

absolute average deviation (AAD) for the training, 

the validation and the prediction stages. Also 

showing that the ANN with 14 neurons in the 

hidden layer had the best performance, as it 

successfully described the experimental binary 

data with similar precision of the LMA model 

while achieving the lowest AAD of the prediction 

stage. Figures 3 and 4 directly compare the values 

of equivalent fraction in the resin obtained by the 

ANN (structure 4-14-3) and the LMA.  

 

Figure 3. Comparison of equivalent fraction         

in the resin obtained by ANN and LMA on the 

training stage. 
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Figure 4. Comparison of equivalent fraction         

in the resin obtained by ANN and LMA on the 

validation stage. 

Table 5. Results from the application of ANNs to 

binary data. 

Structure 
    AAD 

    (Training) 
  AAD 

(Validation) 
AAD  

(Prediction) 

4-4-3 2.9679 2.6868 9.7694 

4-5-3 2.2358 2.0174 9.5619 

4-6-3 1.6899 1.4487 8.7044 

4-7-3 1.5100 1.3697 9.2653 

4-8-3 2.6861 2.4882 7.2843 

4-9-3 2.2416 2.1481 7.9458 

4-10-3 1.5456 1.2623 9.0990 

4-11-3 2.1445 1.9920 7.5164 

4-12-3 1.3902 1.2156 9.4888 

4-13-3 2.5914 2.3263 7.4862 

4-14-3 2.2829 2.0906 6.5697 

4-15-3 1.4362 1.1736 8.5470 

4-16-3 2.4160 2.2182 8.6353 

4-17-3 1.6718 1.4439 8.9175 

4-18-3 1.7866 1.5872 8.5264 

4-19-3 1.4694 1.2391 8.8479 

4-20-3 1.6853 1.3443 8.4258 

 

Figure 5 presents the equilibrium curves 

obtained by the ANN  (structure 4-14-3). 

To evaluate the prediction capacity of the 

ANNs, which were trained using only binary 

equilibrium data, the ternary results were 

compared to the experimental data and are 

presented on Figure 6. 

 

 

Figure 5. Equilibrium curves for the Binary 

systems Cu
2+

-Na
+
, Zn

2+
-Na

+
 and Zn

2+
-Cu

2+
           

by ANN (4-14-3). 

 

Figure 6. Equivalent fractions in the resin (ANN). 

A non-linear equation system was used to 

obtain ternary data through the use of LMA. The 

results were also compared to experimental data 

and are presented on Figure 7. Methodology used 

to obtain the results in Figure 7 is presented by 

Borba et al (2010). 

The absolute average deviations of the 

prediction of equilibrium ternary data by the LMA 

and ANNs, were, respectively 3.9984 and 6.5697. 

Figures 8 and 9 present the error diagram 

related to the estimation of the composition in the 

resin for the ternary system.  
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Figure 7. Equivalent fractions in the resin (LMA). 

 

 

Figure 8. Concentration in the solid phase error 

diagram related to the ternary system (LMA). 

 

 

Figure 9. Concentration in the solid phase error 

diagram related to the ternary system (ANN). 

 

The diagrams indicate the residue is in the 

range of -0.14 to 0.11, for the LMA, and -0.15 to 

0.14, for the ANNs. 

5. CONCLUSIONS 

In present investigation, the efficiency of the 

Artificial Neural Networks was compared with the 

Law of Mass Action with regard to the 

representation of data of the binary (Cu
2+

-Na
+
, 

Zn
2+

-Na
+
 and Cu

2+
-Zn

2+
) and ternary (Cu

2+
-Na

+
-

Zn
2+

) equilibrium. 

ANNs described with efficiency the binary 

equilibrium data, which may be represented from 

AAD rates and compared to the LMA in Tables 3 

and 4, with similar results obtained by ANNs and 

LMA. 

ANNs also revealed a good capacity for the 

prediction of the ternary system. Although 

Artificial Law of Mass Action (AAD = 4.00) 

presented a lower deviation than the Neural 

Networks (AAD = 6.57), both methodologies 

managed to predict satisfactorily the behavior of 

the ternary system equilibrium. 

Therefore, the application of ANNs can be 

considered a valid alternative to conventional 

modeling since it calculates explicitly the fraction 

in phases in equilibrium while LMA requires the 

solution of non-linear equation system. 
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