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ABSTRACT: The use of artificial neural networks to predict the adsorption isotherms of human 

IgG on Ni(II)-IDA-PEVA hollow fiber membranes was studied. Neural networks were trained 

using the Levenberg-Marquardt algorithm combined with Bayesian regularization technique and 

experimental data for different temperatures. The resulting neural network demonstrated to be 

able to interpolate the behavior of the adsorption pair in the temperature range [4ºC,37ºC]. Cor-

relation coefficients achieved for interpolated isotherms were all greater than 0.97. Therefore, 

similar to that obtained using the Langmuir model.  
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1. INTRODUCTION. 

Adsorption processes have a large range of 

application in different fields (Ruthven, 1984). 

However, the implementation of rigorous envi-

ronmental policies and high quality requirements 

have highlighted the importance of adsorption in 

several areas, such as the removal of pollutants of 

effluent streams (Çelekli et al., 2013; Dutta and 

Basu, 2013; Yetilmezsoy and Demirel, 2008) and 

in chromatography for downstream processing 

aiming at protein purification (Labrou and Clonis, 

1994). Besides, adsorption can be carried out using 

environmentally friendly adsorbents like lentil 

straw (Çelekli et al., 2013), Antep Pistachio shells 

(Yetilmezsoy and Demirel, 2008), or using shelled 

Moringa oleifera seed (Raj et al., 2013).  

In order to optimize the adsorption process 

is necessary to know the behavior of the adsorbent-

adsorbate pair. This knowledge is commonly rep-

resented by means of isotherms models, e.g.  

Langmuir and Freundlich models. However, in the 

last years artificial neural networks proved to be a 

efficient alternative (Çelekli et al., 2013; Dutta and 

Basu, 2013; Yetilmezsoy and Demirel, 2008; 

Morse et al., 2011). Morse et al. (2011) indicated 

the use of neural networks to model adsorption 

isotherms due to the inherent complexities of ad-

sorption process. Indeed, the adsorbent-adsorbate 

interaction depends on several conditions like tem-

perature, pH, compositions and/or the nature of 

adsorbent material. As confirmed, by De Laurentiis 

and Ravdin (1994), artificial neural networks are 

able to deal with these kind of complex interac-

tions, such as protein adsorption. 

In this study the application of neural net-

works to predict the adsorption isotherms of the 

protein human Immunoglobulin G (IgG) onto a 

nickel affinity polyethylene vinyl alcohol (PEVA) 

hollow fiber membrane, prepared using 

imminodiacetic acid (IDA) as chelating agent, in a 

Tris-HCl 25 mM pH 7.0 buffer system, is pro-

posed. The adsorption process using Ni(II)-IDA-

PEVA hollow fiber membranes is a valuable alter-

native to the purification of human IgG, as demon-

strated by Ribeiro et al. (2008).        

2. MATERIAL AND METHODS  

2.1 Experimental data 
The descriptions of materials and experi-

mental procedures are presented by Ribeiro et al. 

(2008). The data collection consists of the IgG 

surface concentrations (Q*, mg g
-1

) for different 



 

IgG liquid-phase equilibrium concentrations (C*, 

mg mL
-1

) at 4ºC (22 points), 15ºC (18 points), 

25ºC (19 points) and 37ºC (20 points).  

2.2. Artificial neural networks 

Artificial neural networks, or simply neural 

networks, consist of a collection of processing 

nodes. These nodes, also called neurons, are 

interconnected and arranged in layers. So, when a 

stimulus is presented to the ANN, a unidirectional 

signal is propagated from the input layer to the 

output layer. The signals that reach each neuron 

are amplified or suppressed accordingly to a 

synaptic weight and a bias, processed by means of 

an activation function and emitted to the next 

layer. The propagation of the signal takes place 

until the output layer, where the ANN response to 

the stimulus is obtained. However, is necessary 

that the ANN learn to represent adequately the 

input-output behavior. This is done in the training 

stage. In this stage a set of input-output patterns are 

presented to the ANN and, based in the output 

error, the synaptic weights and bias are adjusted. 

The ANN obtained after the training must be able 

to represent the input-output behavior assimilated 

from the training data and generalize it for unseen 

data sets.     

The effective use of ANN evolves basically 

the determination of its structure, including the 

number of layers and the number of neurons on 

each layer, of the activation function and algorithm 

of training. The multilayer perceptron is the ANN 

structure most used for engineering purposes. They 

are designed with one input layer, one output layer 

and hidden layers. Their layers are connected in a 

way that the layer output signal is emitted just for 

the subsequent layer. The number of neurons in the 

input and output layers equals the number of inputs 

and outputs, respectively. The determination of the 

ideal number of neurons in the hidden layer(s) is a 

complicated task. Designing an ANN with few 

neurons in the hidden layers produces an ANN 

with no sufficient capacity and low precision is 

obtained. On the other hand, with an excessive 

number of neurons the capacity of generalization is 

affected and overfitting can occur. However, the 

use of generalization improvement techniques such 

as Bayesian regularization could overcome this 

problem (MacKay, 1992).  

The Bayesian regularization technique could 

be combined with the Levenberg-Marquardt 

algorithm, resulting in a efficient training method. 

The objective function used by this method is a 

linear combination of the sum of the squares of the 

synaptic weights and bias (SSW) and of the sum of 

the squares of the errors (SSE). Therefore,  the 

synaptic weights and bias are enclosed to small 

values. 

The activation functions most used in the 

hidden layer are nonlinear sigmoid functions 

(logistic and hyperbolic tangent functions). The 

nonlinearity imposed by these activation functions 

leads to local minima in the error surface. Thus, for 

certain initial sets of synaptic weights a local 

minimum could be found and the solution attained 

is not optimal (Demuth et al., 2008).       

2.3. Isotherm modelling by means of 

artificial neural networks   
The Mathworks™ neural networks toolbox 

was used to train the neural networks. The train-

ings were carried out using the Levenberg-

Marquardt algorithm combined with the Bayesian 

regularization technique. In order to find the best 

topology neural networks trainings were performed 

varying the number of neurons in the hidden layer  

trained (just single hidden layers were considered 

in this study). The data set was normalized in the 

range [-1,1] and every different neural network 

training was repeated fifty times, therefore the 

chance of obtaining a model that had converged to 

local minima was reduced. This also reduce the 

importance of the choice of the transfer function. 

Thus, only the hyperbolic tangent function was 

used. After the trainings the neural networks that 

achieved the smallest sum of squared error was 

chosen.   

3. RESULTS AND DISCUSSION 

In the first experiment a neural network was 

used to predict the adsorption isotherm of human 

IgG on a Ni(II)-PEVA-IDA membrane at 4ºC. In 

this case, the neural network have one input, C* 

and one output, Q*. The data set was divided in 

three subsets, 14 points were used in the training, 4 

in the tests and 4 in the validation.  

The training proceed until the neural net-

work convergence, that is, until the training set 

error becomes constant or the error of validation 

set begins to increase between an epoch to the 

next. Also, the number of maximum epochs was 

set to 200. Trainings were performed for 2 to 15 

neurons in the hidden layers and the smaller sum 



 

of squared error achieved was 2018.0 (mg g
-1

)
2
 in 

the 11
th
 training with 9 neurons in the hidden layer, 

the deviations of all 22 points were considered in 

this calculation. It was observed that the neural 

networks had always converged before reach the 

maximum of epochs.  

The 22 points were fitted to the Langmuir 

isotherm model using the Mathworks™ curve fit-

ting toolbox. Better results were achieved by 

means of the Levenberg-Marquardt algorithm. For 

a confidence level of 90%, the fitting resulted the 

equation (01): 
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where Qm = 262.5 mg g
-1

 is maximum IgG binding 

capacity (the confidence bounds were 246.9 mg g
-1

 

and 278.0 mg g
-1

) and Kd = 2.528 mg mL
-1

 is the 

apparent dissociation constant (the confidence 

bounds were 1.885 mg mL
-1 

and 3.171 mg mL
-1

). 

Equation (01) leads to the coefficient of determina-

tion, R
2
 = 0.973 and SSE = 4585 (mg g

-1
)

2
. The 

comparison of the results obtained by neural net-

work and
 
by the Langmuir isotherm model is pre-

sented in Figure 1. 

 

 

Figure 01. Comparison of adsorption isotherm at 

4ºC obtained using Artificial neural network 

(ANN) and Langmuir isotherm model. 

Besides, the maximum deviation obtained 

by ANN was 20.73 mg g
-1

 against 25.59 mg g
-1

 of 

the isotherm model. It must be pointed that only 14 

of the 22 points were effectively used to prepare 

the neural model. The R
2 

value achieved was 

0.988. 

In a second experiment, the effect of the 

temperature was included. Thus, there was two 

inputs, the IgG liquid-phase equilibrium concentra-

tion, C*, and the temperature. In these case, all 

experimental points obtained at 4ºC and 37ºC were 

used in the training. The achieved neural model 

was tested to the interior points, that is, to predict 

the isotherms at 15ºC and 25ºC. In these case no 

validation set was considered during the training, 

so the maximum of epochs has been reached sev-

eral times. 

The performance of the neural networks was 

measured using the equation 02: 
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where P is the performance index, nd is the num-

ber of experimental points at temperature set T (nd 

= 18 for 15ºC, i.e., T=1 and nd = 19 for 25ºC, i.e., 

T=2) and Q*N is the IgG surface concentration 

calculated by the ANN. 

The P value of 3010.0 (mg g
-1

)
2
 was ob-

tained for the 26
th
 training with 12 neurons in the 

hidden layer. The adsorption isotherms at 15ºC and 

25ºC obtained using this ANN are illustrated in the 

Figure 02. 

 

 

Figure 02. Human IgG surface concentration cal-

culated using the neural model for unseen data. 

The correlation coefficients (R) were 0.988 

for data set at 15ºC and 0.973 for 25ºC.  

In Figure 03 are presented the adsorption 

isotherms at 4ºC and 37ºC obtained using the neu-

ral model. These two sets of data were used in the 

training. The correlation coefficient (R) achieved 

for data set at 4ºC was 0.992 and for the data set at 

37ºC was 0.961. 

It could be observed in Figures 01-03 that 

ANNs were able to describe the isotherms ade-

quately including the effect of temperature. As 

expected, the Levenberg-Marquardt algorithm 

combined with Bayesian regularization technique 

was able to avoid overfitting problems even for an 

excessive number of neurons.     



 

 

Figure 03. Human IgG surface concentration cal-

culated using the neural model for training data. 

These results are in accordance with that 

presented by Morse et al. (2011). This study could 

be expanded by including the effect of different 

chelating agents, pH, or buffer systems in the anal-

ysis.         

4. CONCLUSIONS  

Artificial neural networks were successfully 

used to predict the adsorption isotherms of human 

IgG on Ni(II)-IDA-PEVA hollow fiber mem-

branes. The resulting neural network was able to 

interpolate the behavior of the adsorption process 

in the temperature range used in the training. The 

results were similar to that of the traditionally used 

Langmuir model. However, the interpolation abil-

ity of ANNs is an unquestionable advantage.    
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