EUCLIDES ROXO ROBERTO PEIXOTO

 HAROLDO CUNHA

 HAROLDO CUNHA DACORSO NETTO

 DACORSO NETTO}

MATEMATICA 2: CICLO

> 1a Série

LIVRARIA FRANCISCO ALVES

Matemática-2 $\mathbf{2 B}^{\circ}$ Ciclo

1: SERIE

DOS MESMOS AUTORES

Do Prof. Euclides Rôxo

Lições de Aritmética
Curso de Matemática - 3^{a} Série (Geometria)
A Matemática na Educação Secundária
Unidades e Medidas.

MATEMÁTICA 2. CICLO

2. ${ }^{2}$ EDIÇÃO

LIVRARIA FRANCISCO ALVES
166, Rua do Ouvidor, 166 - Rio de Janeiro
s. paulo belo horizonte 292, Rua Líbero Badaro \mid Rua Rio de Janeiro, 655 1945

ADVERTENCIA

Com o presente volume, inicia-se a série MATEMÁTICA - 2° CICLO, destinada aos alunos dos 'Cursos cientifico e clássico.

A matéria não ficou adstrita, entretanto, aos títulos e sub-titulos dos atuais programas.

Procuraram os autores sugerir alguns complementos e aplicações, sem se afastar, contudo, dos assuntos dos programas e sem quebrar a harmonia do conjunto

Tais desenvolvimentos, apresentados, em geral, em tipo menor, permitirão certa liberdade quanto à extensão a dar ao curso, de acôrdo com a reação oferecida pelo aluno.

Cumpre observar, ainda, que as notas, que ilustram algumas passagens e completam outras, tiveram, em sua maioria, a dupla finalidade de ampliar os conhecimentos do aluno e de incitar-lhe a curiosidade pela matéria.

Finalmente, deverá ser frizado que os atuais programas do 2 . Ciclo são compostos de partes nitidamente distintas que compreendem: Aritmética teórica, Álgebra elementar e complementar (incluida a teoria das equações), Geometria elementar, Trigonometria, Álgebra vetorial e Geometria analitica. Por isso, com o fim de manter, na exposição de cada um dêsses ramos, a indispensável unidade didática, julgaram os autores, do melhor alvitre, dividir a tarefa tal como é indicado em cada uma das partes.

PARTE I - ARITMÉTICA TEÓRICA

UNIDADE I

As operações aritméticas fundamentais: 1. Teoria da adição, da subtração, da multiplicação, da divisão, da potenciação e da radiciação de inteiros. 2. Sistemas de numeração.

PRELIMINARES

1 - Números naturais. São intuitivas as ideias de unidade e de pluralidade (coleção, conjunto, etc.). E chamamos números naturais aos números

$$
1,2,3,4,5, \ldots \ldots
$$

cujo conceito resulta, por abstração, da idéia de coleção de objetos distintos. (1).

2 - Contagem. Contar os objetos de uma coleção é dar o número de objetos dessa coleção. Para isso, a cada objeto faz-se corresponder, sucessivamente, os números $1,2,3,4, \ldots$ Se ao último objeto corresponder o número 8 , diremos que a coleção tem 8 objetos.

Se repetirmos a operação, tomando os objetos numa ordem diferente da adotada na primeira contagem, obteremos ainda o número 8 .

Daí concluirmos que o número não depende da ordem em que se consideram os objetos da coleção. (2).

3 - Símbolos numéricos. Ao sistema de regras e convenções, mediante as qụais se exprimem os números, denomi-na-se numeração. Usamos o sistema decimal de numeração, isto é, o sistema de numeração que se baseia na seguinte convenção:

[^0]No segundo caso, em que há unidades de a sem correspondentes em b, dizemos que o número a é maior do que o número b, e escrevemos

$$
a>b
$$

5 - Propriedades da igualdade. Da definição acima resultam para a igualdade as seguintes propriedades:
I) Identidade, isto é, $a=a$.
II) Comutatividade, isto é, se $a=b$, também temos $b=a$.
III) Transitividade, isto é, se $a=b$ e $b=c$, conclui$\operatorname{mos} a=c$.

6 - Propriedades da desigualdade. É fácil verificar-se que a desigualdade não admite a identidade nem é comutativa. De fato, não podemos ter $a>a$ ou $a<a$, e de $a<b$ não podemos tirar $b<a$, mas $\operatorname{sim} b>a$.

A desigualdade é, entretanto, transitiva, pois é claro que se tivermos $a<b$ e $b<c$, poderemos daí concluir $a<c$.

7 - Sucessão dos números naturais. À totalidade dos números

$$
1,2,3, \ldots, 9,10,11, \ldots, \quad 19,20,21, \ldots
$$

que se obteem acrescentando sempre uma unidade a cada número considerado, chama-se sucessão dos números naturais ou, ainda, sucessão natural dos números. Como se vê, os números estão dispostos em ordem crescente, isto é,

$$
1<2<3<\ldots<9<10<11<\ldots
$$

A sucessão é ilimitada no sentido crescente, isto é, dado um número natural, existe sempre um sucessor.

[^1]"Dez unidades de uma ordem formam outra unidade de ordem imediatamente superior".

Diz-se, então, que o número dez é a base do sistema deci mal de numeração. Podemos, empregando o princípio

Todo algarismo escrito à esquerda de outro vale dez vezes mais do que se estivesse no lugar desse outro",
representar qualquer número nesse sistema por meio do algarismo 0 e dos simbolos $1,2,3,4,5,6,7,8,9$, denominados algarismos significativos ${ }^{(3)}$.

Mas, para estudar as propriedades gerais dos números, conveniente representá-los por letras, dispensando o emprêgo de sistemas de numeracão, de modo que os raciocínios e conclusões sejam válidos quaisquer que sejam os números representados por essas letras. Frequentemente se usa, em vez de letras distintas, a mesma letra afetada de indices, como a_{1}, a_{2} a_{3}, \ldots, ou de acentos, como $a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, \ldots .$.

4 - Comparação dos números naturais - Para comparar dois números a e b, colocaremos as unidades de $a \mathrm{e}$ as unidades de b em correspondência, uma a uma, como indicam as figuras abaixo.

No primeiro caso, em que a todas as unidades de a correspondem todas as unidades de b, dizemos que os números a e b são iguais e escrevemos

$$
\begin{equation*}
a=b \tag{}
\end{equation*}
$$

-

(5) Qs sinais $>\mathrm{e}<$ foram introduzidos por T. Harriot (1631); na bra "Artis Analyticae Praxis".

Os sinais $\geq e \leq$ sto devidos a Bouguer.

8 - Números inteiros. Retirando-se todos os objetos de uma coleção, esta desaparece. Exprime-se êste fato dizendo que o número de objetos da coleção ficou sendo zero (0)

Os números

$$
0,1,2,3, \ldots, 9,10,11, \ldots
$$

são denominados números inteiros
Não admitiremos zero como número natural.

TEORIA DA ADIÇÄO

9 - Soma de números inteiros. Consideremos duas coleções de objetos, uma contendo a objetos e outra b objetos. Juntando todos êsses objetos numa coleção única, diremos que a coleção resultante é a soma das coleções primitivas, e o número que lhe corresponde, a soma dos números a e b.

O mesmo critério se aplica no caso de considerarmos mais de duas coleções, de modo que podemos assim definir :
"Soma de vários números naturais $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{l}$ é o número s que contém todas as unidades de $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{l}$, e somente essas".

Indica-se que s é a soma dos números a, b, \ldots, l escre-vendo-se

$$
s=a+b+\ldots+l
$$

Estendem-se as definições precedentes aos números inteiros mediante a convenção:

$$
\begin{equation*}
a+0=a \tag{}
\end{equation*}
$$

[^2]Em particular a soma de dois números é igual a zero quando ambos são iguais a zero.

10 - Propriedades da adição. I) A adição é unívoca, isto é, somando-se vários números, obtém-se um resultado único. ${ }^{(8)}$.

Esta proposição, de caráter intuitivo, pode ainda ser enunciada do seguinte modo:

$$
\begin{array}{lc}
\text { Sendo } & a=a^{\prime}, b=b^{\prime}, \ldots, l=l^{\prime} \text {, vem } \\
& a+b+\ldots+l=a^{\prime}+b^{\prime}+\ldots+l^{\prime}
\end{array}
$$

isto é, somando-se várias igualdades, membro a membro, obtémse ainda uma igualdade.

Em particular, somando-se o mesmo número aos membros de uma igualdade, obtém-se ainda, uma igualdade, isto é, sendo $a=b$, tem-se $a+c=b+c$.
II) A adição é comutativa, isto é, a soma independe da ordem das parcelas. ${ }^{(9)}$

De fato, na definição de soma de números inteiros nenhum critério de ordem intervém, sendo a soma independente da ordem em que se consideram as parcelas. De modo que, por exemplo

$$
a+b+c=a+c+b
$$

III) A adição é associativa, isto é, a soma não se altera quando se substituem duas ou mais parcelas por sua soma.

Com efeito, adicionar b a a e depois acrescentar c, é o mesmo que às unidades de a reunir de uma só vez as unidades de $b+c$. Assim

$$
\begin{equation*}
a+b+c=a+(b+c) \tag{}
\end{equation*}
$$

Consequência - Todo número é igual à soma das unidades decimais representadas pelos seus algarismos.

[^3]De fato, como todo número representa a soma de suas unidades simples, associando-se estas em dezenas, tornaremos o número em soma de dezenas e unidades; associando-se as dezenas em centenas, tornaremos o número em soma de centenas, dezenas e unidades; e assim por diante.

Temos, por exemplo :

$$
8703=8000+700+3
$$

IV) A adição é dissociativa, isto é, a soma não se altera quando se substitue qualquer parcela por várias outras das quais a mesma é a soma.

Com efeito, da igualdade

$$
a+b+c+d+e=a+(b+d+e)+c
$$

por exemplo, concluímos pela propriedade comutativa das igualdades:

$$
a+(b+d+e)+c=a+b+c+d+e
$$

podendo-se, pois, substituir a soma efetuada $(b+d+e)$ pela soma indicada $b+d+e$. Assim:

$$
3+15=3+7+8
$$

V) A adição é monotònica, isto é, somando-se o mesmo número aos membros de uma desigualdade, obtém-se outra desigualdade do mesmo sentido.

Assim, sendo $a<b$, tem-se $a+c<b+c$
Por exemplo, de $5<9$ vem $5+7<9+7$
11 - Adição de desigualdades. Somando-se, membro a membro, várias desigualdades do mesmo sentido, obtém-se outra desigualdade do mesmo sentido.

Das desigualdades $a>a^{\prime}$ e $b>b^{\prime}$ resulta ($\mathbf{1 0}, \mathbf{v}$), soman-do-se b aos membros da primeira e a^{\prime} aos membros da segunda:

$$
\begin{aligned}
& a+b>a^{\prime}+b \\
& a^{\prime}+b>a^{\prime}+b^{\prime}
\end{aligned}
$$

Daí concluimos (6) :

$$
a+b>a^{\prime}+b^{\prime}
$$

A demonstração estende-se a um número qualquer de desigualdades.

Assim, das desigualdades

$$
2<5, \quad 3<8, \quad 6<7
$$

vem

$$
2+3+6<5+8+7 \quad \text { ou } \quad 11<20
$$

12 - Regra prática da adição. Nas proposições II, III e IV, baseia-se a regra prática para somar dois ou mais números dados por sua representação decimal. Assim, para somar os números

$$
n_{1}=\ldots c_{1} d_{1} u_{1} \text { e } n_{2}=\ldots c_{2} d_{2} u_{2}
$$

em que u_{1} e u_{2} representam os algarismos das unidades, d_{1} e d_{2} os algarismos das dezenas, etc., somamos primeiro os algarismos u_{1} e $u_{2}{ }^{(11)}$. Suponhamos que se obtenha um resultado composto de u unidades e de δ dezenas, isto é:

$$
u_{1}+u_{2}=u+\delta
$$

Somando em seguida δ com os algarismos d_{1} e d_{2}, obteremos um resultado constituido de d unidades e de δ^{\prime} dezenas, isto é,

$$
\delta+d_{1}+d_{2}=d+\delta^{\prime}
$$

e assim por diante. Os algarismos da soma são, da direita para a esquerda, u, d, \ldots, figurando por último aqueles que se obtéem na última adição parcial.

Na prática, dispostas as parcelas em sucessivas linhas horizontais, de modo que as unidades de mesma ordem decimal
(2) (1) (2)

569
7915
4837
13321 fiquem na mesma coluna, somam-se os algarismos de cada coluna, começando-se da direita para a esquerda. Debaixo de cada coluna escre-ve-se apenas o algarismo das unidades do respectivo total, transportando-se para a coluna seguinte o número de dezenas, como se verifica no exemplo indicado.

[^4]22. $1781,712 \mathrm{~m}^{3}$. $23.13,85 \mathrm{dm}$, 24. $2,28 \mathrm{~m}$. 25. $4,62 \mathrm{~cm}$ e $1,732 \mathrm{~cm}$. $26.3,3125 \mathrm{~m}^{2}$ $3,93 \mathrm{~cm}$. 28. $935,306 \mathrm{~cm}^{3}, 29,96 \mathrm{~cm}^{3} \quad 30.855,36 \mathrm{~m}^{3}$. $31 . \quad 533,333 \mathrm{~cm}^{3}$ 2. $2728,527 \mathrm{~cm}^{38}$. $33.2,341$. $34 . \quad 0,594312 \mathrm{~m}^{3}$, $35.751,68 \mathrm{dm}^{3}$. $36.3865,972 \mathrm{~cm}^{2}$ 7. $201,474 \mathrm{~m}^{3}, 38,3 \mathrm{~cm}^{3} .39 .9,882 \mathrm{~m}^{3} \cdot 40,144,333 \mathrm{dm}^{3}, 41.1,591 \mathrm{~m}^{3}, 42.10 \mathrm{~cm}^{3}$ 3. $22,5 \mathrm{dm}^{3}, 44.36 \mathrm{~m}^{3}, 45.72 \mathrm{~m}^{3} \cdot 46.5,1401 \mathrm{~m}^{2}, 47,5 \mathrm{~m} .48,200 \mathrm{~cm}^{3} \cdot 49,2 / 3$ 50. $45 \mathrm{~cm}^{8}, 51.8 \mathrm{~cm}, \quad 52.8 / 2 \sqrt{2} \mathrm{~m}^{2}, \quad 53, \quad 5,345 \mathrm{dm}^{3}, 54, \quad 2,497 \mathrm{~cm}^{3}, \quad 55 . \quad 822 \mathrm{~cm}^{3}$ 6. $4,068 \mathrm{~cm} .57 .5,54 \mathrm{~m}$.
 74. $714 \mathrm{~cm}^{3}$. 75. $23,382 \mathrm{~m}^{2}$, 76. $\mathrm{d}=\frac{h \sqrt{3}}{3}$. 77. $2 / \mathrm{a}$. 78. $2 m^{2} x^{4}-m^{4} x^{2}+a^{6}=0$. Con forme seja $m^{2} \leqq 2 a^{2}$, o problema adinite zero, uma ou duas soluçōes. 79. o lado da base maior é dado pela equação $3 h x^{2}-3 h d x+h d^{2}-V=0$. O problema dimite uma solução quando se tem $V>h d^{2} / 3$; quando $V=h d^{2} / 2$ o tronco de genera em piramide. 80. Porque tal soma é igual a $\frac{6 V}{l a^{\prime}}$. 81. Considerando a base B decomposta em triangulos de áreas $b_{1}, b_{2}, b_{3}, \ldots$ e a base B^{\prime} em trian gulos de áreas $b_{1}^{\prime}, b_{2}^{\prime}, b_{2}^{\prime}, \ldots$ temos
$$
\frac{b_{1}^{\prime}}{b_{1}}=\frac{b_{2}^{\prime}}{b_{2}}=\frac{b_{3}^{\prime}}{b_{1}}=\cdots \frac{B^{\prime}}{B}
$$
donde se deduz $\sqrt{b_{1} b_{1}^{\prime}}+\sqrt{b_{2} b_{2}^{\prime}}+\ldots=\sqrt{B B^{\prime}}$. 82. a) Faz-se $B=B^{\prime}=S$, b) Faz se $B^{\prime}=0$ e $S=1 / 4 B, \quad$ c) Da^{2} proporcionalldade das distancias do vertice aos planos das bases B, B^{\prime} e da seccão S, deduz-se $2 \sqrt{S}=\sqrt{B}+\sqrt{B^{\prime}}$ e. elevando ao quadrado, $4 S=B+B^{\prime}+2$ \} \overline { B B ^ { \prime } } . d) Tem-se B = a b , B ^ { \prime } = c d , S = 1 / 4 (a + c) (b + d)

Teorema de Euler. Noções sôbre os poliedros regulares Pág. 396.

1. 11. 2. 6. 3. 42.4 .18 arestas, 12 vértices, 40 retos. 5. 57 faces, 40 vêr tices, 95 arestas. 6. $15,7,20,8$, a) 72 r b) 48 r of 40 r (d) $40 \mathrm{r}, 9, a)$ octo gonal, b) pentadecagonal, e) icosagonal, d) heptagonal. 10. 6 triangulares 9 quadrangulares. 11, a) hexagonal, b) octogonal, o) pentadecagonal. 12. a) $62,352 \mathrm{~cm}^{2}$ e $25,452 \mathrm{~cm}^{2}$, b) $31,176 \mathrm{~cm}^{2}$ e $12,726 \mathrm{~cm}^{2}$. a) $117,875 \mathrm{dm}^{3}$, b) $1,590 \mathrm{dm}^{3}$ $17.20,3953 \mathrm{dm}^{2}$. 18. $1,59075 \mathrm{dm}^{5}$.

INDICE

AdVERTÊNCIA

Unidade

Adição 12
Subtração 16
Multiplicação 25
Divisão 45
Potenciação 50
Radiciação
62
62
Sistemas de numeração
Sistemas de numeração
70
Teoremas gerais sôbre divisibilidade 71
Caracteres de divisibilidade 81
Minimo múliplo 90
Teoria dos números primos 97
Unidade III
Números fracionários 108
Operações sôbre frações 116
Frações decimais 129
Conversão das frações ordinárias em dizimas
Conversão das frações ordinárias em dizimas 136 136
Nocões sôbre cálculo numérico aproximado. Erros, oper ções abreviadas 145
Soluções dos exercicios de aritmética 166

Segunda Parte - Álgebra

Unidade

Identidade de polinômios de uma variavel
 173
 Identidade de polinômios de mais de uma variável

175177
Método dos coeficientes a determinar
Identidades clássicas 178
Divisão de polinômios de uma variável 180
Divisão de polinômios de mais de uma variável 18 ?
Divisāo por $x \pm a$ Lei de Ruffini 191
M.d.c. em.m.c. de dois polinômios de uma variável 200
Unidade V
Decomposição do trinômio do 2° grau 21
Inequacōes do 2° grau
Noçōes elementares sôbre continuidade e sôbre máximos e mi-
nimos 224
Variação do trinômio do 2° grau; representação gráfica 230
Problemas elementares sôbre máximos e minimos 230
Soluçoes dos exercicios de Algrbra 252
Parte III - Geometria
Unidade VI
Determinacão de am plano 265
Intersecção de retas e planos 269
Paralelismo de retas e planos 271
Reta e plano perpendiculares 277
Perpendiculares e obliquas de um ponto a um plano 281
Diedros; planos perpendiculares entre si 285
Projecões sôbre um plano 293
Ângulos poliédricos. Estudo especial dos triedros 297
Unidade VII
Noções gerais sôbre poliedros 309
Prisma; áreas 311
Paralelepipedo; áreas 315
Pirâmides: áreas 319
Volumes 337
Teorema de Euter. Nocões sôbre poliedros regulares401
Cif $1.000,00$

$$
4-11-99
$$

[^5]
EXTRATO DO CATÁLOGO DA LIVRARIA FRANCISCO ALVES

FAUSTO BARRETO E CARLOS DE LAET Antologia Nacional

NELSON ROMERO
A Pronuncia do Latim
O) programa de latim no Ginásio - 1^{a} e 2^{a} Séries
" " " $\quad n \quad " \quad-3^{n}$ e $4^{a} \quad "$
O Programa de Latim - 2° ciclo. 1^{a} Série
JOÃO PECEGUEIRO
Quimica - 1° vol.
Química - 2° vol.
CARLOS H. DA ROCHA LIMA
Teoria de Análise Sintática
OSWALDO SERPA
Modern English Grammar
OSWALDO SERPA O OTELO REIS
Medical English
M. S. HULL E MACHADO SILVA

English Literature
NIGANOR LEMGRUBER.-.C. THIRÉ - MELO E SOUSA

Matemática Comercial e Financeira
HENRI DE LANTEUIL
Histoire litteraire - Première Série
Histoire litteraire - Deuxième Série

AFRÂNIO PEIXOTO

Noçōes de História da Literatura Brasileira
Noções de Historia de Literatura Geral
JOSÉ OITICICA
Manual do Estilo
BASILLIO DE MAGALHĀES
História do Brasil - 1 vol.
AFONSO VARZEA. - VERISSIMO C. PEREIRA

- AQUARONE

Geografia Física
Geografia Humana
Mário Vieira de Mesquita
Pontos de Química,Analitica - 2^{a} edição

[^6]
[^0]: (1) Para completo esclarecimento sôbre o asșunto aconselhamos a leiande esclarecimento sorbe o asşunto açe de Álgebra e Anátura do excelente livro de Bento I
 (2) Este

[^1]: 5, 6, 7, 8 e 9 são de origem indiana. Tenda aceitação, os símbolos $1,2,3,-4$ árabes, passaram a denominar-se algarismos sido introduzidos na Europa pelos pelos gregos na numeração sexagesimal (II sec. A. C.) simbolo 0 , já usado nhecida, devendo-se no entanto a denominação zero, bem como a de digem desco-
 aos árabes. Cfr. aos árabes. Cfr. H. Schubert, "Principes fondamentaux de le l'Arithmétique algarismo clopédie des sciences mathematiques, edição francesa de J e segs.
 identidade dos numeros considerados de sfmbolos numéricos para significar a a igualdade, a R . Record (1557). \quad Deve-se a instituicão do sinal $=$, para

[^2]: (6) 0
 mercial de J. Widman (1489) são data de 1630 .
 (7) Exprime-se rente em relação a adiçio.

[^3]: (8) Em vez de únívoca, ê comum o termo uniforme para as operações que dão um resultado ûnico.
 (9) As denominações comutativa e distributiva foram introduzidas por F. (10) O emprêgo de parênteses damilton acrescentou a denominação associativa. trattato di numeri et misure", Veneza, 1556-60, parte 2^{a}.

[^4]: (11) Por soma dos algarismos entenda-se soma dos valores absolutos dos algarismos.

[^5]: N* 3.505 - Oficinas Gráficas da Livraria Francisco Alves

[^6]: Remetemos nosso catálogo gratis a quem o pedir

